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Degrees of freedom. X*(c", &)
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* Motivation |l (fluid equations of motion)

0, T" =0

We'd like the equations of motion for hydro to be
conservation equations.
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Schwinger-Keldysh

End result;
Sepp = / d'odpdd (£ + L)
where;

Example:

L=+=g(P—n9"¢"Dsgi; DgQr1)



Schwinger-Keldysh

End result;
S pp = /dd 4040 (£ Z)
eff — g -
where;
Example:

L =+=9 (P —n9"*9”" Dygi; DgQs:)
Leads to:

TY = eu'u’! + (gij + uiuj)P —no¥d



Summary

ZSK[Al,AQ] — Dngggeﬁse‘f‘f

— 1
A<<

Our goal is to find Ser ¢ .

Symmetries:
e Zs| A1 +dA1, As| = Zsk|Ar, As + dAs] = Zgk A1, A2
¢ ZSK A, A] =1

» ZsxclAv, Ao)" = Zsic[A5, A7) |Zske[ A, As)| <
* Zsk|A1, Ao] = Zskna, A1(—t1),na, Aa(—t2 — 15)]
Degrees of freedom:

. X¢ X¢



(£+Z
g')

Jij,

(

Summary
g

/ d%odfd
L

vV—9
L

Seff

We found
where
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* Generalizations to other fluids

* Non relativistic fluids
 Superfluids

« Anomalies (Glorioso, Liu and Rajagopal 2017, Jensen, Marjieh, Pinzani-Fokeeva, AY, 2017)

- Magneto hydrodynamics via 2-form fields (Glorioso and Son 2018)

* Generalizations to out of equilibrium systems

 Floquet systems (Glorioso, Gromov, Ryu, 2019)

* Generalizations to more contours

- Classification (Loganayagam, 2019)
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Chaos

Chaos can be characterised by

Tr (e_BH V(t), W(O)]2) ~ e
where

A < Amaa: =27l

(Maldacena, Shenker, Stanford, 2019)

It is possible to compute these 4-pt functions via Schwinger
Keldysh theory!?

(Blake, Lee, Liu, 2017, Blake, Davison, Grozdanov, Liu, 2018, Grozdanov 2019, Haehl, 2018)
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Stochastic noise

The ‘a’ type fields in the action encode stochastic noise which, at the
guadratic level is Gaussian-like

7~ /e’ifngG(Xr)—l—...dda:DXaDXT

N /e_szg(Xr)—l_'”ddeXaDXr

E.g., in (Chen-Lin, Delacretaz, Hartnoll, 2018) the authors looked at a
theory of a single diffusion mode

1 1 .
L =iT*k(Voa)? — ¢a(é — DVZ€) + V¢, (QAGQ + 3>\’e3) +icT? (V) ()\e + )\’62) + ...

This was preceded by (Kovtun, Moore, Romatschke, 2014)
- Validity of hydro ?

« How do 3rd order terms contribute?

- What about noise associated with particular solutions?
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AdS/CFT

There exist various equivalent prescriptions for
computing the Schwinger-Keldysh action in this
background, or fluctuations of it.

(Herzog, Son, 2002, Skenderis, Van Reese, 2008, Son, Teaney,
2009, Crossley, Glorioso, Liu, Wang, 2015, de Boer, Heller,
Pinzani-Fokeeva, 2015, Glorioso, Crossley, Liu, 2018, de Boer,
Heller, Pinzani-Fokeeva, 2018)

Can we use this to verify the structure of the effective action?
Can one see the ghosts in the Schwinger Keldysh action? (Gau, Glorioso, Liu, 2018)

Can one find a prescription which is independent of the background
geometry?
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Classification and constraints

Without an effective action, hydro can be thought of as a phenomenological
theory:

» Write down the most general constitutive relations:

T = (e + P)utu” + Pn"" 4. ..
- Choose a frame:
[IA% _ 1%
1" u, = —eu
- Impose a local version of the second law:

OP
P=—T >0
€ + 5T T

 Impose the Onsager relations:

Are there more constraints? How does local entropy production arise?
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Are there more constraints? How does local entropy production arise?

Recall:

e Zsi|A1 + dN1, As) = Zsk|A1, As + dAs| = Zgk|A1, A2
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Classification and constraints

Are there more constraints? How does local entropy production arise?

Recall:

e Zsi| A1 +dA1, As| = Zgk |A1, As + dAs]| = Zgi A1, As]
¢ ZSK A,A] =1

e Zsi|A1, As|® = Zgi|A5, AT

» Zsi A1, Ao) = Zsk |na, Ai(—t1), na, Ast—tz— 15)]
Boundedness implies

Im(Serr) > 0.
One can show that, as a result,

9,,5" > 0.
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where:
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Classification and constraints

Boundedness implies Im(S.rs) > 0. One can show that, as a result, 9,,S" > 0.

Consider:
Ser = / d'odpdd (£ + L)
The current associated with £ 3 is the entropy current:
VS + DS’ + D;S? = 0
The @ = @ = (0 component of this equation is
ViS'+ 57+ 87 =0
or
Qi o @9 @b
VS =59 - g
An explicit computation yields:

Im(Sepr) >0 = —/de(Sg + Sg) > 0

(Jensen, Marjieh, Pinzani-Fokeeva, AY, 2018, Haehl, Loganayagam, Rangamani, 2018)
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Classification and constraints

Boundedness implies Im(S.rs) > 0. One can show that, as a result, 9,,S" > 0.

But @LS“ > 0 is not sufficient to set Im(Serr) > 0.

Im(Serr) =0 V5" =0 Non dissipative
Im(Sesy) VSt >0 Dissipative

> ()
Im(Sefp) >0 V5 =0 Exceptional (Pseudo-dissipative)

e.qg.,
T = (e + P)ufu” + Pgh” + 'y_((u“u” + g")o” — ZVauaa“”)
We find:
JE = sut
But positivity of the effective action implies:

v =0



Classification and constraints

Boundedness implies Im(S.rs) > 0. One can show that, as a result, 9,,S" > 0.

But @LS“ > 0 is not sufficient to set Im(Serr) > 0.

Im(Serr) =0 V5" =0 Non dissipative
Im(Sesy) VSt >0 Dissipative

> ()
Im(Sefp) >0 V5 =0 Exceptional (Pseudo-dissipative)

e.g.,
T = (e + P)ufu” + Pgh” + 'y_((u“u” + g“”)cf2 — ZVauaa“”)

 Are there better examples?

- Is there a geometric interpretation in AdS/CFT?
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Hidden symmetries

The Navier Stokes equations are given by:

o 1
o0+ U - VU4 Vp = =Vy

—

V-uvr=20
From these it follows that

1
8tE — —EQ

with

1
E = —/vzdda:
2

wij — ivj — 8]-1;7;

R

DO | —

/wijw” d%x



Hidden symmetries

The energy equation is

1

8tE:—EQ
with
1 2 1d 1 ij 1d _
E:§ ved%x Q:§ wiiw?dx  wij = 0v; — 0;v;

Phenomenologically and numerically one finds that (the dissipative anomaly)

1
lim —Q #0

R— o0
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The energy equation is

1
875E — _EQ

with

1 1 .
E = — /’UdeZIZ‘ () = — /wijw”ddx wii = 0;v; — O0;;
2 2

Phenomenologically and numerically one finds that (the dissipative anomaly)

1
lim —

This leads to Kolmogorov’s theory where energy is dissipated at small scales.



Hidden symmetries

The energy equation is

1
875E — _EQ

with

1 1 .
E = — /’UdeZIZ‘ () = — /wijw”ddx wii = 0;v; — O0;;
2 2

Phenomenologically and numerically one finds that (the dissipative anomaly)

, 1
hm —Q # O O-ij — ’L'Uj — ajvz

R—oo R
Taking a closer look: /
1

8750 — /Wjiwik()'kjddl‘ o E akwijakwij



Hidden symmetries

The energy equation is

1
8tE — _EQ

with

1 1 .
E = 5 /’UdeZE () = 5 /w,,;jw”ddx wii = 0;v; — O0;;

Phenomenologically and numerically one finds that (the dissipative anomaly)

lim —Q#O

R— o0

Taking a closer look:

o= | M - & [ ot



Hidden symmetries

The energy equation is

1
8tE — —EQ

Taking a closer look:

d=2
. 1 .
0 = / M - — / Owi; 0w

So in 2 dimensions we have, for large R,

1
O E =0 0:§) = —EP

which leads to the inverse cascade picture.
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Hidden symmetries

Is there an analog of enstrophy in relativistic flow?

For conformal, uncharged fluids,

Q308
JH = ;2 s
with
Qop = 0a(Tug) — 9p(Tua)
satisfies

0,J" = O(0%)

(Carrasco, Lehner, Myers, Reula, Singh, 2012)
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Hidden symmetries

For conformal, uncharged fluids,

(), 50208
T2

We can generalise this to other equations of state by looking for symmetries of the
effective action:

J'u — UJ'UJ a'uJ'UJ — 0(84)

S = / V—gP(T, )d "o

In 2 spatial dimensions one finds that

Q? 2 OF 2 [ 0s s
0XH = —ut — —PHY [ 2V, QY, = +20,00" + = | ==V, T+ —V,u | Q"
Ts2 sp’ ( v i P i v S <8T " o ,u) )



Hidden symmetries

More generally, we can generalise this to other equations of state by looking for
symmetries of the effective action:

S = / V—gP(T, 1)d* o

In 2 spatial dimensions one finds that

02 2 . OF, o2 (0s Js 5
dXH = T—SQUM — S—p,P“ (QVVQ o T p/ -+ QQVQCL + g (WVVT -+ auv,,,u) Qa )
__mr

oC T
with

P=p(Tf(pn/T))
IS a symmetry. The associated current is

QZ
JH = Qag = 0a (T'f(1/T)upg) — 0 (T'f(1/T)ua)

S
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