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X = Xr + ✓Xḡ + ✓̄Xg + ✓̄✓Xa

Now:

and:

�Q =
@

@✓
�Q̄ =

@

@✓̄
+ i✓£�



Schwinger-Keldysh
We find that     and    do not form a group. We add an extra 
nilpotent symmetry    .

QK
Q
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•  ZSK [A1 + d⇤1, A2] = ZSK [A1, A2 + d⇤2] = ZSK [A1, A2]

Symmetries:

ZSK [A,A] = 1•  
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Chaos can be characterised by

(Maldacena, Shenker, Stanford, 2019)
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• How do 3rd order terms contribute?
• What about noise associated with particular solutions?

• Validity of hydro ?
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Can one find a prescription which is independent of the background 
geometry?

Can one see the ghosts in the Schwinger Keldysh action? (Gau, Glorioso, Liu, 2018)

Can we use this to verify the structure of the effective action?
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ḡ ) � 0�



Classification and constraints
One can show that, as a result,@µS
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ḡ � S ✓̄
g

The                     component of this equation is✓ = ✓̄ = 0

An explicit computation yields:

Im(Seff ) � 0 =)
Z

dd�(S ✓̄
g + S✓
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(Jensen, Marjieh, Pinzani-Fokeeva, AY, 2018, Haehl, Loganayagam, Rangamani, 2018)
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Classification and constraints
One can show that, as a result,@µS

µ � 0.Im(Seff ) � 0Boundedness implies .

But @µS
µ � 0 is not sufficient to set Im(Seff ) � 0 .

• Are there better examples?

• Is there a geometric interpretation in AdS/CFT?

e.g.,
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The energy equation is
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Taking a closer look:

So in 2 dimensions we have, for large R,

@tE = 0 @t⌦ = � 1

R
P

d = 2

which leads to the inverse cascade picture.
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For conformal, uncharged fluids,

Jµ =
⌦↵�⌦↵�

T 2
uµ

⌦↵� = @↵(Tu�)� @�(Tu↵)

with

@µJ
µ = O(@4)

satisfies

(Carrasco, Lehner, Myers, Reula, Singh, 2012)
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is a symmetry. The associated current is
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